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Abstract

This technical note is a set of documents for Hollow Electron Beam
Lens (HEBL) numerical model. Analytical models are discuses is Sec. 1.
In Sec. 2 rotations and translations are treated. Routine description is
given in Sec. 3 including source code (see also track ext.f90). In Sec. 4
scripts that are used for HEBL models and data processing are described.
Various simulation results (including comparison with experiment) are
presented in Sec. 5. All LifeTrack files, scripts, and latex sources are
available at [link to AFS to be set here].
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1 HEBL models

In this section HEBL models with electron beam imperfections are developed.
Electron beam is assumed to be infinite in longitudinal direction. This allows
to treated HEBL as a conventional transverse element. To include deviations of
hollow beam transverse profile from ideal case two simple models based on drift–
kick split are developed in reduced phase space (x, px, y, py). Parameters for
these models can be obtained from hollow beam measurements or simulations.
Electron beam alignment is described in Sec. 2. Edge effects and other possible
models are under development.
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1.1 Integration. Drift–kick split

1.1 Integration. Drift–kick split

Drift-kick split is a first order symplectic integrator. Currently it is the only
integration method that is available for HEBL. New positions (x, y) and new
moments (px, py) on the next step of integration are obtained by the following
rule,

pn+1 = pn + f(qn)

qn+1 = qn + pn+1∆s

where function f(q) = f(x, y; s) is related to the derivative of the transverse
field potential, ∆s is the length of a drift subsection. HEBL element is treated
as a conventional transverse element, i.e. it is assumed to have only transverse
field. Then transverse Lorentz force acting on a test particle is,

Fx = qEx − qβbcBy

Fy = qEy + qβbcBx

Next we express Fx and Fy in terms of electron beam rest frame electric field,

Fx = qγe(1± βeβb)Ex

Fy = qγe(1± βeβb)Ey

where γe, βe are electron beam relativistic parameters and βb is circulating
beam relative speed. If ~ve~vb < 0 then one should take ”+” sign and the force is
maximum. Transverse kicks in Cartesian frame are the following,

∆px = ∆s
q

βbcpb
γe(1 + βeβb)Ex (1)

∆py = ∆s
q

βbcpb
γe(1 + βeβb)Ey (2)

1.2 Electrons trajectories in HEBL

If one wants to use parameters from beam measurements then information about
electron beam (such as transverse profile) is not generally available in the inter-
action region, i.e. inside the main solenoid. But one may know beam parameters
in several places outside the main solenoid. Then to recover particles positions
inside interaction region we assume that electrons obey the following equation
of motion,

rm

rg
=

√
Bg

Bm
(3)

where rm is electron position in the main solenoid, rg is electron position at the
gun (or any other position with known magnetic field), Bm and Bg are magnetic
fields inside the main solenoid and the gun respectively. By doing so we neglect
torsion in longitudinal magnetic field and collective effects.
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1.3 Ideal HEBL model

ρ

Er

r, [ cm ]

Figure 1: Ideal HEBL profile and electric field (normalized, matched to 4σ with
σ = 0.05[cm]).

1.3 Ideal HEBL model

On Fig. 1 transverse density distribution and radial electric field for ideal HEBL
are shown. Inner r1 and outer r2 electron beam radius are obtained with the
help of eq. (3) since their values at the gun position are known. Then using the
results of the first subsection transverse kicks that are found to be (~ve~vb < 0),

∆pr =


0 if r < r1

2Ωe
r2−r2

1
r(r2

2−r2
1)

∆s if r1 < r < r2

2Ωe
1
r ∆s if r > r2

(4)

Ωe = 0.3× 10−7 Ie(A)
pb(GeV/c)

γe
1 + βeβb

βeβb

where,

• Ie – electron beam current

• pb – circulating particle designed momentum

• γe and βe – electron beam relativistic parameters

• βb – circulating particle relative velocity
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1.4 HEBL sources of imperfections
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Figure 2: An example of measured transverse HEBL density profile after the
main solenoid (B = 0.3 [T]).

1.4 HEBL sources of imperfections

Several sources of imperfections for HEBL are listed below:

• lack of the axial symmetry (see Fig. 2)

• non ideal radial profile (see Fig. 2)

• electron beam alignment (see Sec. 2)

• effects introduced by bends in electron beam

Models for first two cases are developed in this note based on conventional
drift–kick split. Electron beam model is described in Sec. (1.1) and (1.2). An-
gular model deals with axial imperfections and allows to estimate each harmonic
contribution. This model is of a special interest when studying effects on the cir-
culation beam core. Radial model helps to estimate how disturbed profile effects
particles removal rate. These two models can be combined if necessary, i.e. one
can put two kick elements successively (if two models are valid simultaneously)
and that gives a kick element with zero length again.
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1.5 HEBL model with angular imperfections

1.5 HEBL model with angular imperfections

In this case we want to investigate how angular imperfections influence the
circulating beam (core). Electron lens is assumed to be infinitely long and thin
with charge distribution in the beam rest frame,

ρ(r, θ) =
f(θ)
2πre

δ(r − re)

where re is cylinder (beam) radius, f(θ) is some function that defines angular
distribution shape. Then we express charge distribution in the following form,

ρ(r, θ) =
Ie

βec

δ(r − re)
2πre

∞∑
m=0

ξm cos(mθ + δm)

where ξm is a relative amplitude of m-th harmonic (relative to zero harmonic’s
amplitude, i.e. to the beam line charge density), δm is harmonic’s phase, Ie

is electron beam current, βec is electron velocity. These parameters are to
be determined from transverse beam profile measurements (Fig. 2). For this
distribution electric field can be obtained for each harmonic,

Er(r, θ) =
Ieξm

4πε0βe
cos(mθ + δm)

{
− rm−1

rm
e

, r < re

rm−1rm
e , r > re

(5a)

Eθ(r, θ) =
Ieξm

4πε0βe
sin(mθ + δm)

{
rm−1

rm
e

, r < re

rm−1rm
e , r > re

(5b)

On Fig. 3 electric field is shown for m = 1, 2, 3. To determine harmonic
parameters we put origin into center-of-charge and divide space into angular
slices. Then we count the number of particles in each slice, normalize this value
and perform FFT to determine amplitudes and phases (Fig. 4). Transverse
kicks for this model are,

∆px = −Ωe∆sξm
rm−1

rm
e

cos((m− 1)θ + δm) (6)

∆py = Ωe∆sξm
rm−1

rm
e

sin((m− 1)θ + δm) (7)

where,

• Ωe is given by eq. (4)

• ∆s – kick-drift subsection length [cm]

• ξm – harmonic’s relative amplitude

• δm – harmonics phase

• re – electron beam radius [cm]
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1.5 HEBL model with angular imperfections
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Figure 3: Angular distribution function and corresponding electric field. (a)
m = 1 – dipole, (b) m = 2 – quadrupole, (c) m = 3 – sextupole.
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1.5 HEBL model with angular imperfections

π

relative amplitude

m, harmonic number

100 angular slices

0 2π

Figure 4: An example of angular distribution function and it’s FFT for measured
electron beam transverse profile. In ideal case angular distribution is constant.
For this case only quadrupole harmonic m = 2 has large amplitude ξ2 = 17%,
other harmonics’ relative amplitudes are small. This is a typical picture for
measured electron beam profiles (ξ2 = 15%...25%).

See more detains about data processing for angular model in Sec. 4.2.
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1.6 HEBL model with radial imperfections

1.6 HEBL model with radial imperfections

This model handles hollow electron beam radial imperfection, i. e. deviation
of radial charge density from the ideal case. Having a 2D particles distribution
(Fig. 2) it is possible to construct axisymmetric radial density distribution for
non ideal beam transverse profile. It is done similar to the angular case but
instead of dividing distribution into angular slices we use radial ones. This allows
to obtain normalized radial density g(r) which is connected to usual density as
ρ(r) = ρmaxg(r) (Fig. 5). Normalized electric field can be found from g(r) by

r, [mm]

measured disrtibution

g
(r

)

ideal distribution

Figure 5: Normalized radial density.

numerical integration of 1
r

∫ r

0
g(r)rdr and further normalization (Fig. 6). Then

positions are recalculated according to eq. (3) to obtain normalized density and
electric field inside the main solenoid (Fig. 7). Transverse kicks are given by eq.
(1) and (2) with Ex = Er cos(θ) and Ey = Er sin(θ). Radial electric field can
be expressed as,

Er(r) = Emaxf(r)

The radius corresponding to the maximum field value is found from f(r),

rmax : f(rmax) = 1
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1.6 HEBL model with radial imperfections
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Figure 6: Normalized radial electric field

The maximal electric filed is found to be,

Emax =
1

2πε0

Ie

βec

κ

η

1
rmax

where,

• Ie is electron beam current

• βec is electron beam velocity

• rmax radius value where f(r) = 1

• κ =
∫ rmax

0
g(r)rdr

• η =
∫ rcut

0
g(r)rdr, rcut is the edge of distribution g(r > rcut) = 0

Note that rmax 6= rcut in general, but the ratio κ
η is still close to 1 (> 0.95 for

measured profiles). Then transverse kick is,

∆pr(r) =
2Ωe∆s

rmax

κ

η
f(r)
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1.6 HEBL model with radial imperfections

cut
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r, [cm]
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Figure 7: Normalized density and electric field inside the main solenoid.

where Ωe is the same factor as in ideal or angular case. To obtain an analytical
formula for transverse kick one need to interpolate f(r) is the region of interest.
But it is practically difficult to make this interpolation with one polynom. From
one hand it is known that f(r) = rmax

r for r > rcut. Then interpolation is
required only for 0 < r < rcut. This region is divided into three pieces,

f(r) = 0 0 < r < rinitial

f(r) = fp1 rinitial < r < rmiddle

f(r) = fp2 rmiddle < r < rcut

See Fig. 8 where interpolation is shown. See Sec. 4.3 for more derails about
data processing for radial model. Routine is described in Sec. 3.2.
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1.6 HEBL model with radial imperfections
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Figure 8: Interpolation of normalized electric field.
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2 Euclidean Group in LifeTrack

In this section note patching of Euclidean Group into LifeTrack is discussed.
Procedure for finite length external elements is developed first. Then locally
correct Euclidean Group is introduced. The effect of ideal solenoid is developed
for drift–kick element including beam alignment. Similar approach can be used
to treat quadrupole magnets in IP region and other. Source code with comments
and input description is given in 3 or track ext.f90. Treatment is developed for
reduced transverse phase space (x, px, y, py), time–like variable is not changed
within external element, but energy deviations are handled correctly.
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2.1 Free space propagation

2.1 Free space propagation

2.1.1 Hamiltonian z–parametrization

Relativistic Hamiltonian function for field–free propagation is known to be,

H(x, px, y, py, z, pz; t) = c
√

m2c2 + ~p 2 (8)

Here Hamiltonian is parametrized by time t in (x, px, y, py, z, pz) phase space.
However it is more convenient to use z–parametrization for local integration. It
is possible if z(t) is a monotonic function of t as it is the case in most accelerator
elements. Then new phase space (x, px, y, py, t, pt) can be introduced and new
z–parametrized Hamiltonian,

K(x, px, y, py, t, pt; z) = −
√(pt

c

)2

−m2c2 − p2
x − p2

y (9)

where K = −pz and pt = −H. Now we introduce a reference particle, i.e.
a particle with initial conditions (0, 0, 0, 0, 0,−H0; 0) and H0 = c

√
m2c2 + p2

0.
Reference particle trajectory is simply a strait line. Particle with deviations
has,

K(x, px, y, py, t, pt; z) = −

√(
H0(1 + δ)

c

)2

−m2c2 − p2
x − p2

y (10)

where δ is energy deviation H = H0(1 + δ). We scale (10) with respect to the
reference momentum p0 while keeping the same notation for K, px and py,

K(x, px, y, py, t, pt; z) = −

√
H2

0 (1 + δ)2 −m2c4

c2p2
0

− p2
x − p2

y (11)

In relativistic case H2
0 (1 + δ)2 >> m2c4 Hamiltonian (11) is reduced to,

K(x, px, y, py, t, pt; z) = −
√

(1 + δ)2 − p2
x − p2

y (12)

Hamiltonian (12) is exactly solvable. It describes a field–free propagation of a
particle with energy (momentum) deviation δ and pt = c(1 + δ).
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2.1 Free space propagation

2.1.2 Exact Drift

Equations of motion for the field–free region with Hamiltonian (12) are,

dx

dz
=

∂K

∂px
=

px

pz
dpx

dz
= −∂K

∂x
= 0

dy

dz
=

∂K

∂px
=

py

pz
dpy

dz
= −∂K

∂y
= 0

dt

dz
=

∂K

∂pt
=

pt

pz
dpt

dz
= −∂K

∂t
= 0

(13)

These equations change only coordinates of a particle (x, y, t). The action of
this field–free map on initial phase point (x0, px0, y0, py0, t0, pt0) is,

x = x0 + z
px0

pz0

px = px0

y = y0 + z
py0

pz0

py = py0

t = t0 + cz
1 + δ

pz0

δ = δ0

(14)

where,

pz0 =
√

(1 + δ0)2 − p2
x0 − p2

y0

Usually instead of t the difference ∆t = t̂ − t is used in tracking, where t̂ is a
time of flight of reference particle, t̂ = t̂0 + zc , then,

∆t =
cδ

pz0

Equations (14) are exact solution for 6D–phase space field–free problem.

2.1.3 Paraxial Drift

In paraxial case we expand the square root in (12) and paraxial 6D Hamiltonian,

K(x, px, y, py, t, pt; z) = −(1 + δ) +
1

2(1 + δ)
(
p2

x + p2
y

)
(15)

New transverse positions are,

x = x0 + z
px0

1 + δ
y = y0 + z

py0

1 + δ

(16)
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2.2 External Elements in LifeTrack

2.1.4 Drift element map

For now we care only about reduced phase space (x, px, y, py). Exact solution
for the field–free region is,

x = x0 + z
px0

pz0

px = px0

y = y0 + z
py0

pz0

py = py0

(17)

where,

pz0 =
√

(1 + δ0)2 − p2
x0 − p2

y0

Paraxial solution is given by,

x = x0 + z
px0

1 + δ
px = px0

y = y0 + z
py0

1 + δ
py = py0

(18)

2.2 External Elements in LifeTrack

2.2.1 Tracking in Lifetrack

Schematically the tracking procedure in LifeTrack is shown on Fig.9. Ray prop-

n −−> n + 1

IP
n

IP
n + 1

ξ

Figure 9: Tracking in LifeTrack. Ray propagates between zero lens IPs with
map ξn→n+1

agates with map ξn→n+1 (this map is linear) from one IP to another. External
elements are placed in IP–like manner and have zero length by default.

2.2.2 Finite length external element

To include a finite length external element one should use negative drifts Tz(−L/2)
(if ξn→n+1 is a linear map) as it is shown on Fig.10. Ray initial coordinates
come to the fiducial plane z = L/2, then propagated back in space for distance
L/2 to obtain ray coordinates at the element fiducial entrance plane. External
element propagates the ray with map ξ1→2 from z = 0 to z = L. The last step
is to use a negative drift to move from z = L to z = L/2. The negative drift
is described with equations (17) or (18). Element EXT EG00 can be used to
make a finite length element (see 3.5).
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2.3 Locally correct Euclidean Group

EXT

Tz(−L/2) Tz(−L/2)

ξ
0 −−> L

IPn + 1IPn

0 L/2 L

Figure 10: Finite length external element in LifeTrack. Ray propagates from
z = L/2 to z = 0 with negative drift Tz(−L/2). Then form z = 0 to z = L with
element map ξ1→2 and back to z = L/2 with Tz(−L/2).

2.3 Locally correct Euclidean Group

Consider phase space (x, px, y, py, t, pt)(z) with pt = c(1 + δ). Initial phase
space point is propagated successively through each accelerator element from
it’s entrance plane (z = 0) to exit plane (z = L – element’s length),

xf

pf
x

yf

pf
y

tf

pf
t

 = Mi→f


xi

pi
x

yi

pi
y

ti

pi
t

 .

When alignment is introduced coordinate transformations should be performed
before and after applying element’s map,

xf

pf
x

yf

pf
y

tf

pf
t

 = P−1
~d,~θ

Mi→fP~d,~θ


xi

pi
x

yi

pi
y

ti

pi
t


Compositional maps P~d,~θ and P−1

~d,~θ
can be decomposed into translations and

rotations, for e.g.,

P~d,~θ = R~θT~d = Rx(θx)Ry(θy)Rz(θz)Tz(dz)Ty(dy)Tx(dx)
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2.3 Locally correct Euclidean Group

In this subsection we derive maps for translations Tx(x), Ty(y) , Tz(z) and
rotations Rx(θx), Ry(θy),Rz(θz).

• Tx – x–translation

• Ty – y–translation

• Tz – z–translation

• Rx – rotation along x

• Ry – rotation along y

• Rz – rotation along z

Tz, Rx and Ry are ”time coupled” transformations since they involve free–space
propagation. All transformations are locally correct while z(t) – monotonic
holds. Transformations are time reversible, e.g. T−1

z (θy) = Tz(−θy).

2.3.1 Translations

First we deal with uncoupled translations Tx and Ty Fig. 11. These translations
correspond to the case when element’s plane (in blue) is shifted with respect to
fiducial plane by amount dx or dy respectively. The coordinate transformation
is simply,

x2 = x1 − dx (19)

y2 = y1 − dy (20)

where x2 and y2 correspond to particle coordinates in element’s frame, x1 and
y1 – fiducial frame. Formally transformations Tx and Ty applied successively
even these translations commute, i.e TxTy = TyTx. Tz transformation (Fig. 11)
is a drift in free–space (see subsection 1.) and coordinate transformations are
given by equations (17) or (18). For exact drift,

x2 = x1 + dz
px1

pz1

y2 = y1 + dz
py1

pz1

(21)

where,

pz1 =
√

(1 + δ)2 − p2
x1 − p2

y1

Inverse transformations are obtained by changing (dx, dy, dz) → (−dx,−dy,−dz).
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2.3 Locally correct Euclidean Group

(d)
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z z
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1 2 P2P1
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Figure 11: Translations. (a) – ideally positioned element, O1, O2 – fiducial
planes, P1, P2 – actual element entrance and exit planes;(b) – translation along
x–axes; (c) – translation along y–axes; (d) – translation along z–axes.

Ivan Morozov, imorozov@fnal.gov, HEBL documentation, 2012 21



2.3 Locally correct Euclidean Group

2.3.2 Rotations

We start with uncoupled Rz rotation. It’s a rotation along z as it shown on
Fig. 12 and is given by a usual rotation matrix,

x2

px2

y2

py2

 =


cos(θz) 0 − sin(θz) 0

0 cos(θz) 0 − sin(θz)
sin(θz) 0 cos(θz) 0

0 sin(θz) 0 cos(θz)




x1

px1

y1

py1

 (22)

This matrix describes a point rotation, i.e. integration parameter is not changed
during this transformation. Inverse transformation is just θz → −θz. Rotations
along x and y axes (Fig. 12) are not so simple as eq. (22). We perform these

z

θy

θx

θ

xx

zz

yy

O

P

O2

P 1

2

1

Figure 12: Rotations. O1, O2 – fiducial planes, P1, P2 – actual element entrance
and exit planes; θx – rotation along x–axes; θy – rotation along y–axes; θz –
rotation along z–axes.

transformations it two steps,

• point rotation (similar to eq. (22))

• z–propagation

The first step is equivalent to Rz case. Take for instance Rx rotation, then the
first step transformation gives,

y2

py2

z2

pz2

 =


cos(θx) 0 sin(θx) 0

0 cos(θx) 0 sin(θx)
− sin(θx) 0 cos(θx) 0

0 − sin(θx) 0 cos(θx)




y1

py1

z1

pz1

 (23)
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2.3 Locally correct Euclidean Group

where,

pz1 =
√

(1 + δ)2 − p2
x1 − p2

y1

In fact z1 is arbitrary and can be set to 0. The next step is to propagate form
z = z2 to z = 0, where z = 0 is element entrance frame.

x3 = x2 − z2
px2

pz2

y3 = y2 − z2
py2

pz2

(24)

To obtain inverse transformation one should add two more steps because of
finite length of the element.

• θx → −θz

• z2 → −z2

• translation in y direction

• z – propagation

Third step is,
y4 = y3 − L sin(θx) (25)

where L is element’s length. And the fourth step,

x5 = x4 + L(1− cos(θx))
px4

pz4
(26)

y5 = y4 + L(1− cos(θx))
py4

pz4
(27)

The last two steps are obvious from geometrical considerations Fig. 13. Note
that for point–like element (i.e. kick element) additional steps are redun-
dant since L = 0. Rotation along y is similar. For more details see 3.7 or

z

x
L sin 

θ
x

L ( 1 − cos      )

y

z

y

θ

Figure 13: Additional steps in inverse transformation for coupled rotations.

track ext.f90.
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2.4 EG in solenoid

2.4 EG in solenoid

2.4.1 Ideal solenoid

z–parametrized Hamiltonian for ideal solenoid is,

H = −
√

(1 + δ)2 − (px +
bz

2
y)2 − (py −

bz

2
x)2 (28)

where bz = Bz

|Bρ| . Without proof the solution for ideal solenoid is given by,
x
px

y
py

 =


1+c
2

s
bz

s
2

1−c
bz

sbz

4
1+c
2

bz(c−1)
4

s
2

− s
2

c−1
bz

1+c
2

s
bz

bz(1−c)
4 − s

2
sbz

4
1+c
2




x0

px0

y0

py0

 (29)

t = t0 + cz
1 + δ

H
(30)

with,

c(z) = cos
(
−zbz

H

)
s(z) = sin

(
−zbz

H

)
See ?? or track ext.f90 for routine description.

2.4.2 Kick element inside ideal solenoid

One can convince himself that the map for ideal solenoid (29) doesn’t produce
change of phase–space variables if z = 0, i.e. zero–length solenoid. Then similar
to a drift–kick split a ”solenoid–kick” split can be performed.

2.4.3 Alignment inside ideal solenoid

We have derived local Euclidean group for elements inside a free–space. It is
valid if time–like variable is monotonic. In the case of an element inside ideal
solenoid propagation in a rotated time–coupled frame is not trivial, since trans-
verse fields are modified. Transverse x and y translations and z rotation are
remain unaffected. Here we treat the case of a kick–element. Propagation along
z axes is given by ideal solenoid map (29). z translation is a solenoid with
length dz. To perform transformation for coupled rotations we first propagate
along z axes by ∆ (Fig. 12). This step is performed by propagation through
a solenoid which length depends on particle transverse positions at the fiducial
entrance plane (see 3.9 where routine is described). Then point rotations are
made for x and y planes. Inverse transformations start with inverse point rota-
tions for coupled planes. After these rotations inverse solenoid (solenoid is time
reversible) is applied. The rest inverse transformations are the same as in the
regular free–space case except inverse z translation that is an inverse solenoid.
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2.4 EG in solenoid
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∆
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Figure 14: Propagation step. ∆ = dz + x tan θy + y tan θx
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3 HEBL Routines for LifeTrack

This section is a list of LifeTrack routines for HEBL. Brief description of input
parameters, element usage and nesting is presented. All HEBL models are ”one–
kick” elements, this is done in order to simplify code itself and also this leads to
a greater element nesting capabilities, i.e. several ”one–kick” elements can be
placed at the same position. One can make several kicks by nesting ”one–kick”
elements with drift element. Elements with several kicks are also available but
not described here. Only reduced phase space (x, px, y, py) is treated but with
correct δ dependents in drifts and solenoids. Modify PRE TRACK EXT and
TRACK EXT in track ext.f90.

Ivan Morozov, imorozov@fnal.gov, HEBL documentation, 2012 26



3.1 Ideal HEBL lens : EXT EL00

3.1 Ideal HEBL lens : EXT EL00

Detailed description of HEBL ideal model is given in Sec. 1.3. Place HEBL
element into the element list in LifeTrack input file. Set values for EXT EL00,
(use EXT EL10 for several kick–elements separated by paraxial drift)

# <name>: EXT_EL00
Value_1: 1.0
! skip parameter,
! when set to 1 element is on each turn,
! e.g for 6 element is on every 6th turn
Value_2: 1.0
! # of slices, needed for correct kick magnitude calculations
! if more then one kick element used in a row
Value_3: 200.
! element length [cm]
Value_4: 0.9E-10
! omega, see below, this value is for I=0.5[A], beta=0.2
Value_5: 0.24
! r_in[cm], inner HEBL radius
! usually r_in = N sigma, where N is number of sigmas to match,
! sigma is the lagest transverse beam size (sigma_y = 0.06 [cm] for Tev TEL2)
Value_6: 0.4064
! r_out[cm], outer HEBL radius, see below

Value 4 is dimensionless parameter given by,

Ω = 0.3× 10−7 Ie[A]
pb[GeV/s]

γe
1± βeβb

βeβb
(31)

Index ”e” refers to electron beam, ”b” – to circulating beam. Take ”+” sign
if ~ve~vb < 0 and ”-” if ~ve~vb > 0. Value 5 is calculated assuming that electrons
obey,

rm

rg
=

√
Bg

Bm

For HEBL that was installed on Tevatron beam parameters at the gun: rg
in =

0.45 [cm] and rg
out = 0.762 [cm]. Then for fixed Value 5,

r = rin
rg

rg
in

= Nσ
rg

rg
in

(32)

Setting rg = rg
out gives the value of outer radius rout inside the solenoid. This

formula can be used to obtain density distribution or electric field of electron
beam at solenoid location if density distribution or other is given at the gun.
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3.1 Ideal HEBL lens : EXT EL00

SUBROUTINE PRE_TRACK_EXT (type, pref, param)
CASE(’EXT_EL00’)
! param(1) - skip
! param(2) - # of slices
! param(3) - length[cm]
! param(4) - omega
! param(5) - r1[cm]
! param(6) - r2[cm]
param(4)=2._8*param(4)*param(3)/param(2)
param(7)=param(5)**2
param(8)=param(6)**2-param(7)

SUBROUTINE TRACK_EXT (type, param, coord, pwght, nturn, rflag)
REAL(8) :: r,t

CASE(’EXT_EL00’)
IF(MOD(nturn,INT(param(1)))==0 .AND. nturn/=0) THEN

r=SQRT(coord(1)**2+coord(3)**2)
t=ATAN2(coord(3),coord(1))
IF(r<param(5)) THEN

r=0.0
ELSEIF(r>param(6)) THEN

r=param(4)/r
ELSE

r=param(4)*(r**2-param(7))/(r*param(8))
ENDIF
coord(2)=coord(2)+r*COS(t)
coord(4)=coord(4)+r*SIN(t)

END IF
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3.2 HEBL with radial imperfections : EXT EL01

3.2 HEBL with radial imperfections : EXT EL01

Detailed description of HEBL model with radial imperfections is given in Sec.
1.6. Place HEBL element into the element list in LifeTrack input file. Set values
for EXT EL01 (use EXT EL11 for several kick–elements separated by paraxial
drift),

# <name>: EXT_EL01
Value_1: 1.0
! see EXT_EL00
Value_2: 1.0
! see EXT_EL00
Value_3: 200.
! see EXT_EL00
Value_4: 0.972E-10
! omega, see below (see EXT_EL00)
Value_5: 0.15
! r_initial[cm], initial point of interpolation
Value_6: 0.22
! r_midle[cm], midle point of interpolation
Value_7: 0.4176
! r_final = r_cut[cm], final point of interpolation, see below
Value_8: 0.3579
! r_max[cm]/(kappa/eta), f(r_max)=1
! first interpolation function, up to order 4 (5 terms)
! fp1(r_initial < r < r_middle) = a0+a1 r + ... + a4 r^4
Value_9: 44.58
! a0
!...
Value_13: 49592.6
! a4
! second interpolation function, up to order 6 (7 terms)
! fp2(r_middle < r < r_final) = b0 + b1 r + ... + b6 r^6
Value_14: 7.73546
! b0
!...
Value_20: 112676
! b6

See Sec. 4.3 for details about data processing for EXT EL01 element. Value 4
in this routine is Ω that is given by eq. (31) times the normalization coefficient
κ
η where,

κ =
∫ rmax

0

g(r)rdr and η =
∫ rcut

0

g(r)rdr

g(r) is normalized radial charge distribution, rmax is a radius value where electric
field is maximum, rcut is the edge of distribution.
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3.2 HEBL with radial imperfections : EXT EL01

SUBROUTINE PRE_TRACK_EXT (type, pref, param)
CASE(’EXT_EL01’)
! param(1) - skip
! param(2) - # of slices
! param(3) - length[cm]
! param(4) - omega
! param(5) - r_initial[cm]
! param(6) - r_midle[cm]
! param(7) - r_final[cm], r_cut
! param(8) - r_max[cm]/(kappa/eta), f(r_max)=1
! param(9) - param(13) - first poly
! param(14) - param(20) - second poly
param(4)=2._8/param(8)*param(4)*param(3)/param(2)

SUBROUTINE TRACK_EXT (type, param, coord, pwght, nturn, rflag)
REAL(8) :: r,t
CASE(’EXT_EL01’)
IF(MOD(nturn,INT(param(1)))==0 .AND. nturn/=0) THEN

r=SQRT(coord(1)**2+coord(3)**2)
t=ATAN2(coord(3),coord(1))
IF(r .LE. param(5))THEN

r=0.0
ELSEIF((r .GT. param(5)) .AND. (r .LE. param(6)))THEN

r=param(4)*(param(9)+param(10)*r+param(11)*r**2+&
param(12)*r**3+param(13)*r**4)
ELSEIF((r .GT. param(6)) .AND. (r .LE. param(7)))THEN

r=param(4)*(param(14)+param(15)*r+param(16)*r**2+&
param(17)*r**3+param(18)*r**4+param(19)*r**5+param(20)*r**6)
ELSE
r=param(8)*param(4)/r
ENDIF
coord(2)=coord(2)+r*COS(t)
coord(4)=coord(4)+r*SIN(t)

END IF
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3.3 HEBL with angular imperfections (1) : EXT EL02

3.3 HEBL with angular imperfections (1) : EXT EL02

Detailed description of HEBL model with angular harmonics is given in Sec. 1.5.
This model is build to include electron beam profile angular imperfections, i.e.
∂ρ
∂θ 6= 0. Electron beam is replaced with δ–cylinder which charge distribution
that can be decomposed into harmonics. This routine models a single arbitrary
harmonic with parameters which come from measurements of electron beam
profile (inside the cylinder only). To include several harmonics see the last
subsection of this note. For details about harmonic parameters calculation see
Sec. 4.2. Place HEBL element into the element list in LifeTrack input file. Set
values for EXT EL02 (use EXT EL22 for several kick–elements separated by
paraxial drift),

# <name>: EXT_EL02
Value_1: 1.0
! see EXT_EL00
Value_2: 1.0
! see EXT_EL00
Value_3: 200.
! see EXT_EL00
Value_4: 0.9E-10
! see EXT_EL00
Value_5: 1.
! rb[cm], cylinder-beam radius, see discussion below
Value_6: 2.
! harmonic number, e.g. m=2 -- quad, m=3 -- sext.
! m=0 (1/r for r>r_b) is not included
Value_7: .2
! harmonic relative (to average) amp,
! 0.2 means that harm’s amp is 20% of the average density value
! for HEBL test stand typical values m=1, amp=10...15%;
! m=2, amp = 15...25%, other, amp < 5%
Value_8:
!harmonic phase

Harmonics parameters do not depend on radius rb. But kicks do depend. rb

can be chosen arbitrary, for e.g. if one wants to study effects on the beam core.
When analyzing such ”rescaled” model one should remember that results of this
simulations are valid for r < rm, where rm is given by (32) with rg set to be
cylinder radius at gun position. Harmonics amplitudes should be rescaled to
keep kick value fixed,

ξm

rm
b

∣∣∣∣
new

=
ξm

rm
b

∣∣∣∣
old

where m – harmonic number, ξm – harmonic amplitude, rb – cylinder radius.

Ivan Morozov, imorozov@fnal.gov, HEBL documentation, 2012 31



3.3 HEBL with angular imperfections (1) : EXT EL02

SUBROUTINE PRE_TRACK_EXT (type, pref, param)
CASE(’EXT_EL02’)
! param(1) - skip
! param(2) - # of slices
! param(3) - length[cm]
! param(4) - omega
! param(5) - rb[cm]
! param(6) - harm number
! param(7) - relative amp
! param(8) - harm phase
param(4)=param(4)*param(3)/param(2)*param(7)/param(5)**param(6)
param(6)=(param(6)-1._8)/2._8

SUBROUTINE TRACK_EXT (type, param, coord, pwght, nturn, rflag)
REAL(8) :: r,t
CASE(’EXT_EL02’)
IF(MOD(nturn,INT(param(1)))==0 .AND. nturn/=0) THEN

r=param(4)*(coord(1)**2+coord(3)**2)**param(6)
t=2._8*param(6)*ATAN2(coord(3),coord(1))+param(8)
coord(2)=coord(2)-r*COS(t)
coord(4)=coord(4)+r*SIN(t)

END IF
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3.4 HEBL with angular imperfections (2): EXT EL03

3.4 HEBL with angular imperfections (2): EXT EL03

See EXT EL02 description. This routine models a single arbitrary harmonic
with parameters which come from measurements of electron beam profile (inside
and outside the cylinder). Place HEBL element into the element list in LifeTrack
input file. Set values for EXT EL03 (use EXT EL13 for several kick–elements
separated by paraxial drift),

# <name>: EXT_EL03
Value_1: 1.0
! see EXT_EL00
Value_2: 1.0
! see EXT_EL00
Value_3: 200.
! see EXT_EL00
Value_4: 0.9E-10
! see EXT_EL00
Value_5: 1.
! see EXT_EL02, see below
Value_6: 2.
! see EXT_EL02
Value_7: .2
! see EXT_EL02
Value_8:
! see EXT_EL02

For this element rescaling is not of a great interest. Value 5 is fixed by choosing
cylinder radius at the gun position.
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3.4 HEBL with angular imperfections (2): EXT EL03

SUBROUTINE PRE_TRACK_EXT (type, pref, param)
CASE(’EXT_EL03’)
! param(1) - skip
! param(2) - # of slices
! param(3) - length[cm]
! param(4) - omega
! param(5) - rb[cm]
! param(6) - harm number
! param(7) - relative amp
! param(8) - harm phase
param(10)=param(4)*param(3)/param(2)*param(15)/param(7)**param(6)
param(11)=param(4)*param(3)/param(2)*param(15)*param(7)**param(6)

SUBROUTINE TRACK_EXT (type, param, coord, pwght, nturn, rflag)
REAL(8) :: r,t
CASE(’EXT_EL03’)
IF(MOD(nturn,INT(param(1)))==0 .AND. nturn/=0) THEN

r=SQRT(coord(1)*coord(1)+coord(3)*coord(3))
t=ATAN2(coord(3),coord(1))
IF(r .LE. param(5)) THEN
r=param(10)*r**(param(6)-1._8)
t=t*(param(6)-1._8)+param(8)

ELSE
r=param(11)*r**(-param(6)-1._8)
t=t*(param(6)-1._8)+param(8)

ENDIF
coord(2)=coord(2)-r*COS(t)
coord(4)=coord(4)+r*SIN(t)

END IF
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3.5 Field–free propagation routine : EXT EG00

3.5 Field–free propagation routine : EXT EG00

Detailed description of drift element is given in Sec. 2.1. This element is used to
create HEBL models with several kicks. It is also used with negative length to
propagate coordinates from reference plane z = L/2 to the element’s entrance
plane z = 0 and back to z = L/2, i.e for any finite length element, not only
HEBL. This drift also include energy deviations. See last subsection for more
information about nesting. Set values for EXT EG00,

# <name>: EXT_EG00
Value_1: 1.0
! skip, see EXT_EL00
Value_2: 1.0
! 1=exact, 0=paraxial
Value_3: 200.
! drift length[cm]

SUBROUTINE PRE_TRACK_EXT (type, pref, param)

CASE(’EXT_EG00’)
! param(1) - skip
! param(2) = 1 - exact, 0 - paraxial
! param(3) - length [cm] (negative for inverse)

SUBROUTINE TRACK_EXT (type, param, coord, pwght, nturn, rflag)
REAL(8) :: pz(3), a(4)

CASE(’EXT_EG00’)
IF(MOD(nturn,INT(param(1)))==0 .AND. nturn/=0) THEN

IF(INT(param(2))==1) pz(1)=SQRT((1._8+coord(6))**2-coord(2)**2-coord(4)**2)
IF(INT(param(2))==0) pz(1)=1._8+coord(6)
param(3)=param(3)/pz(1)
coord(1:3:2)=coord(1:3:2)+param(3)*coord(2:4:2)

END IF
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3.6 Euclidean group direct routine : EXT EG1A

3.6 Euclidean group direct routine : EXT EG1A

Detailed description of EG direct transformation is given in Sec. 2. This routine
handles misalignment of external element. Set values for EXT EG1A,

# <name>: EXT_EG1A
Value_1: 1.0
! see EXT_EL00
Value_2: 200.0
! length [cm]
Value_3: 1.
! dx[mm] shift, x_new = x - dx
Value_4: 1.
! dy[mm] shift, y_new = y - dy
Value_5: 1.
! dz[mm] shift,
! entarance plane of the element is
! shifted forward by dz
Value_6: 1.
! az[deg], rotation along z (x--y plane)
! when az=90 new x axes is in opposite direction
! then old y axes
Value_7: 1.
! ay[deg], rotation along y (x--z plane)
! when ay=90 new z axes is in opposite direction
! then old x axes
Value_8: 1.
! ax[deg], rotation along x (y--z plane)
! when ax=90 new z axes is in opposite direction
! then old y axes

Note that EG is split into two routines. This is done to create a better nesting
and save input parameters for external element. Both direct and inverse routine
should be used to include misalignment correctly, i.e in element list file DIRECT
TEL2 INVERSE. EXT EG1A and EXT EG1B are valid for arbitrary element
with arbitrary map. Also note that EG routines use exact drift for propagating.
Paraxial approximation appears to give bad numerical accuracy for finite length
elements. One can add paraxial case by changing pz(1) in source code according
to,

p_z(1)=1+coord(6)

or

p_z(1)=1+coord(6)-1/(2(1+coord(6)))(coord(2)**2+coord(4)**2)
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3.6 Euclidean group direct routine : EXT EG1A

SUBROUTINE PRE_TRACK_EXT (type, pref, param)
REAL(8) :: pi = 3.14159265358979_8
! direct transformation
CASE(’EXT_EG1A’)
! param(1) - skip
! param(2) - length [cm]
! param(3) = dx [mm]
! param(4) = dy [mm]
! param(5) = dz [mm]
! param(6) = az [deg]
! param(7) = ay [deg]
! param(8) = ax [deg]
! convert [mm] to [cm]
param(3:5)=param(3:5)/10._8
! convert [deg] to [rad]
param(6:8)=param(6:8)*pi/180._8
param(10:15)=&
(/COS(param(6)),SIN(param(6)),COS(param(7)),SIN(param(7)),COS(param(8)),SIN(param(8))/)

SUBROUTINE TRACK_EXT (type, param, coord, pwght, nturn, rflag)
REAL(8) :: pz(3), a(4)
CASE(’EXT_EG1A’)
IF(MOD(nturn,INT(param(1)))==0 .AND. nturn/=0) THEN

! x,y - translation
coord(1:3:2)=coord(1:3:2)-param(3:4)
! z - translation
pz(1)=SQRT((1._8+coord(6))**2-coord(2)**2-coord(4)**2)
param(5)=param(5)/pz(1)
coord(1:3:2)=coord(1:3:2)+param(5)*coord(2:4:2)
! z - rotation
a(1:2)=coord(1:2)*param(10)-coord(3:4)*param(11)
a(3:4)=coord(3:4)*param(10)+coord(1:2)*param(11)
coord(1:4)=a
! y - rotation
! step 1
pz(1)=SQRT((1._8+coord(6))**2-coord(2)**2-coord(4)**2)
pz(2)=pz(1)*param(12)-coord(2)*param(13)
pz(3)=-coord(1)*param(13)
a(1)=coord(1)*param(12)
a(2)=coord(2)*param(12)+pz(1)*param(13)
coord(1:2)=a(1:2)
! step 2
pz(3)=-pz(3)/pz(2)
coord(1:3:2)=coord(1:3:2)+pz(3)*coord(2:4:2)
! x - rotation
! step 1
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3.6 Euclidean group direct routine : EXT EG1A

pz(1)=SQRT((1._8+coord(6))**2-coord(2)**2-coord(4)**2)
pz(2)=pz(1)*param(14)-coord(4)*param(15)
pz(3)=-coord(3)*param(15)
a(3)=coord(3)*param(14)
a(4)=coord(4)*param(14)+pz(1)*param(15)
coord(3:4)=a(3:4)
! step 2
pz(3)=-pz(3)/pz(2)
coord(1:3:2)=coord(1:3:2)+pz(3)*coord(2:4:2)

END IF
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3.7 Euclidean group inverse routine : EXT EG1B

3.7 Euclidean group inverse routine : EXT EG1B

Detailed description of EG direct transformation is given in Sec. 2. This routine
handles misalignment of external element. Set values for EXT EG1B,

# <name>: EXT_EL1B
Value_1: 1.0
! see EXT_EG1A
Value_2: 200.0
! see EXT_EG1A
Value_3: 1.
! see EXT_EG1A
Value_4: 1.
! see EXT_EG1A
Value_5: 1.
! see EXT_EG1A
Value_6: 1.
! see EXT_EG1A
Value_7: 1.
! see EXT_EG1A
Value_8: 1.
! see EXT_EG1A

See discussion for EXT EL1A routine.
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3.7 Euclidean group inverse routine : EXT EG1B

SUBROUTINE PRE_TRACK_EXT (type, pref, param)
REAL(8) :: pi = 3.14159265358979_8
! inverse transformation
CASE(’EXT_EG1B’)
! param(1) - skip
! param(2) - length [cm]
! param(3) = dx [mm]
! param(4) = dy [mm]
! param(5) = dz [mm]
! param(6) = az [deg]
! param(7) = ay [deg]
! param(8) = ax [deg]
! convert [mm] to [cm]
param(3:5)=param(3:5)/10._8
! convert [deg] to [rad]
param(6:8)=param(6:8)*pi/180._8
param(10:15)=&
(/COS(param(6)),SIN(param(6)),COS(param(7)),SIN(param(7)),COS(param(8)),SIN(param(8))/)

SUBROUTINE TRACK_EXT (type, param, coord, pwght, nturn, rflag)
REAL(8) :: pz(3), a(4)
CASE(’EXT_EG1B’)
IF(MOD(nturn,INT(param(1)))==0 .AND. nturn/=0) THEN

! x - rotation
! step 1
pz(1)=SQRT((1._8+coord(6))**2-coord(2)**2-coord(4)**2)
pz(2)=pz(1)*param(14)+coord(4)*param(15)
pz(3)=coord(3)*param(15)
a(3)=coord(3)*param(14)
a(4)=coord(4)*param(14)-pz(1)*param(15)
coord(3:4)=a(3:4)
! step 2
pz(3)=-pz(3)/pz(2)
coord(1:3:2)=coord(1:3:2)+pz(3)*coord(2:4:2)
! step 3
coord(3)=coord(3)-param(2)*param(15)
! step 4
pz(1)=SQRT((1._8+coord(6))**2-coord(2)**2-coord(4)**2)
coord(1:3:2)=coord(1:3:2)+coord(2:4:2)*param(2)*(1._8-param(14))/pz(1)
! y - rotation
! step 1
pz(1)=SQRT((1._8+coord(6))**2-coord(2)**2-coord(4)**2)
pz(2)=pz(1)*param(12)+coord(2)*param(13)
pz(3)=coord(1)*param(13)
a(1)=coord(1)*param(12)
a(2)=coord(2)*param(12)-pz(1)*param(13)
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3.7 Euclidean group inverse routine : EXT EG1B

coord(1:2)=a(1:2)
! step 2
pz(3)=-pz(3)/pz(2)
coord(1:3:2)=coord(1:3:2)+pz(3)*coord(2:4:2)
! step 3
coord(1)=coord(1)-param(2)*param(13)
! step 4
pz(1)=SQRT((1._8+coord(6))**2-coord(2)**2-coord(4)**2)
coord(1:3:2)=coord(1:3:2)+coord(2:4:2)*param(2)*(1._8-param(12))/pz(1)
! z - rotation
a(1:2)=coord(1:2)*param(10)+coord(3:4)*param(11)
a(3:4)=coord(3:4)*param(10)-coord(1:2)*param(11)
coord(1:4)=a
! z - translation
pz(1)=SQRT((1._8+coord(6))**2-coord(2)**2-coord(4)**2)
param(5)=-param(5)/pz(1)
coord(1:3:2)=coord(1:3:2)+param(5)*coord(2:4:2)
! x,y - translation
coord(1:3:2)=coord(1:3:2)+param(3:4)

END IF
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3.8 Ideal solenoid (1) routine : EXT EGS0

3.8 Ideal solenoid (1) routine : EXT EGS0

Detailed description of ideal solenoid is given in Sec. 2.4. This routine can
be used to model HEBL inside ideal solenoid, assuming HEBL is a drift–kick.
Then instead of EXT EG00 use EXT EGS0. But only to propagate forward.
Procedure of moving coordinates from reference plane z = L/2 to entrance plane
z = 0 is based on EXT EG00. Set values for EXT EGS0,

# <name>: EXT_EGS0
Value_1: 1.0
! see EXT_EL00
Value_2: 200.
! length [cm]
Value_3: 3.E-8
! bz[cm^-1] = Bz/|B rho[cm]|

SUBROUTINE PRE_TRACK_EXT (type, pref, param)
! ideal solenoid
CASE(’EXT_EGS0’)
! param(1) - skip
! param(2) - length [cm]
! param(3) - bz[cm^-1]=Bz/|B rho|

SUBROUTINE TRACK_EXT (type, param, coord, pwght, nturn, rflag)
REAL(8) :: pz(3), a(4)

CASE(’EXT_EGS0’)
IF(MOD(nturn,INT(param(1)))==0 .AND. nturn/=0) THEN

pz(1)=-SQRT((1._8+coord(6))**2-(coord(2)+coord(3)*param(3)/2._8)**2-&
(coord(4)-coord(1)*param(3)/2._8)**2)

pz(2)=COS(-param(2)*param(3)/pz(1))
pz(3)=SIN(-param(2)*param(3)/pz(1))
a(1)=(1._8+pz(2))/2._8*coord(1)+pz(3)/param(3)*coord(2)+&

pz(3)/2._8*coord(3)+(1._8-pz(2))/param(3)*coord(4)
a(2)=pz(3)*param(3)/4._8*coord(1)+(1._8+pz(2))/2._8*coord(2)+&

param(3)*(1._8-pz(2))/4._8*coord(3)+pz(3)/2._8*coord(4)
a(3)=-pz(3)/2._8*coord(1)+(pz(2)-1._8)/param(3)*coord(2)+&

(1._8+pz(2))/2._8*coord(3)+pz(3)/param(3)*coord(4)
a(4)=param(3)*(1._8-pz(2))/4._8*coord(1)-pz(3)/2._8*coord(2)+&

pz(3)*param(3)/4._8*coord(3)+(1._8+pz(2))/2._8*coord(4)
coord(1:4)=a

END IF
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3.9 Ideal solenoid (2) routine : EXT EGS1

3.9 Ideal solenoid (2) routine : EXT EGS1

This routine Sec. ?? can be used to model misalignment for kick–drift HEBL in-
side an ideal solenoid. See last subsection for details. Set values for EXT EGS1,

# <name>: EXT_EGS1
Value_1: 1.0
! see EXT_EL00
Value_2: 200.
! length [cm]
Value_3: 3.E-8
! bz[cm^-1] = Bz/|B rho[cm]|
Value_4: 1
! 1 - direct transformation,
! 0 - inverse transformation
Value_5:
! ay[deg], see EXT_EG1A
Value_6:
! ax[deg], see EXT_EG1A

Length of this solenoid L depends on alignment angles αx, αy and particle
coordinates x, y. When used for direct transformation (Value 4: 1),

L = x tanαy + y tanαX

For inverse transformation (Value 4: 0),

L = Lelement − x tanαy + y tanαX
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3.9 Ideal solenoid (2) routine : EXT EGS1

SUBROUTINE PRE_TRACK_EXT (type, pref, param)
! ideal solenoid with coord. dependent length
CASE(’EXT_EGS1’)
! param(1) - skip
! param(2) - length [cm]
! param(3) - bz[cm^-1]=Bz/|B rho|
! param(4) = 1 - direct, 0 - inverse
! param(5) - ax
! param(6) - ay
param(5)=TAN(param(5))
param(6)=TAN(param(6))

SUBROUTINE TRACK_EXT (type, param, coord, pwght, nturn, rflag)
REAL(8) :: pz(3), a(4)

CASE(’EXT_EGS1’)
IF(MOD(nturn,INT(param(1)))==0 .AND. nturn/=0) THEN

IF(INT(param(2))==1) param(2)=coord(1)*param(6)+coord(3)*param(5)
IF(INT(param(2))==0) param(2)=param(2)-coord(1)*param(6)-coord(3)*param(5)
pz(1)=-SQRT((1._8+coord(6))**2-(coord(2)+coord(3)*param(3)/2._8)**2-&

(coord(4)-coord(1)*param(3)/2._8)**2)
pz(2)=COS(-param(2)*param(3)/pz(1))
pz(3)=SIN(-param(2)*param(3)/pz(1))
a(1)=(1._8+pz(2))/2._8*coord(1)+pz(3)/param(3)*coord(2)+&

pz(3)/2._8*coord(3)+(1._8-pz(2))/param(3)*coord(4)
a(2)=pz(3)*param(3)/4._8*coord(1)+(1._8+pz(2))/2._8*coord(2)+&

param(3)*(1._8-pz(2))/4._8*coord(3)+pz(3)/2._8*coord(4)
a(3)=-pz(3)/2._8*coord(1)+(pz(2)-1._8)/param(3)*coord(2)+&

(1._8+pz(2))/2._8*coord(3)+pz(3)/param(3)*coord(4)
a(4)=param(3)*(1._8-pz(2))/4._8*coord(1)-pz(3)/2._8*coord(2)+&

pz(3)*param(3)/4._8*coord(3)+(1._8+pz(2))/2._8*coord(4)
coord(1:4)=a

END IF
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3.10 Element nesting tips

3.10 Element nesting tips

• Finite length element

As it is already mentioned initial coordinates are given at z = L/2 plane.
This position is final for previews element that is a linear map from IP to
EXT element. Since that map is liner then using inverse drift coordinates
of a particle can be found at the element entrance plane. Then particles
propagate with EXT element which particular form map be arbitrary. The
last step is to use a negative drift to move from z = L to z = L/2. In
elements list one put,

... DR1 TEL2 DR1 ...

and DR1 is # DR1: EXT EG00 with Value 3: -L/2.

• Combining different kick models

If LEN1 and LEN2 are two different and comparable (i.e. valid in the
same rage of parameters, e.g. two harmonics with the same radius). Then
they can be placed at the same position. In the elements list

... LEN1 LEN2 ...

Any number of different kicks can be nested is this way.

• Dividing element into several kicks

... D(-L/2) K1(L/n) D(L/n) ... Kn(L/n) D(L/n) D(-L/2) ...

where D is a drift, K – kick (or several kicks), n – number of kicks, L –
elements length.

• Handling general misalignment

... EGDIR LEN EGINV ...

where EGDIR – direct transformation, EGIVN – inverse transformation,
LEN – any external element.

• Drift–kick HEBL inside ideal solenoid

D(-L/2) K1(L/n) S(L/n) .... Kn(L/n) S(L/n) D(-L/2)

where D– drift, K – kick (or several kicks), S – ideal solenoid

• Misalignment for drift–kick HEBL inside ideal solenoid

Direct and inverse transformation should be performed after each kick.

D(-L/2) DIR K(L/n) INV S(L/n) .... DIR K(L/n) IVN S(L/n) D(-L/2)

where,

DIR = S(dz) S(1,ax,ay,L) EGDIR(dx,dy,ax,ay,az,L=0)

First solenoid of length dz for z translation. Then coordinates propagate
to the element reference frame. Then usual EG is performed for zero lens
element. The inverve procedure is similar.

INV = EGINV(dx,dy,ax,ay,az,L=0) S(0,ax,ay,L) S(-dz)
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4 HEBL models scripts

This section mostly describes scripts for HEBL parameters generation. Param-
eters are used for HEBL angular (1.5) and radial models (1.6). Several post
processing scripts are also presented. They are used to obtain particles loss rate
and lost particles positions inside initial beam distribution. Below you can find
current list of scripts for HEBL,

• AngularDistribution.sh

• RadialDistribution.sh

• LossRate

• LostParticles

All scripts are written with shell and SDDS.
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4.1 2D particles distribution

I = 330 [mA]I = 44 [mA]

I = 2040 [mA] I = 2490 [mA]

Figure 15: 2D electron beam histogram for different beam currents.

4.1 2D particles distribution

This script convert input 2D transverse electron beam distribution into SDDS
format and plots 2D histogram of particles distribution (Fig. 15). It also calcu-
lates distribution center of mass and moves zero into it. One also can specify
center offset and range of particles radius (rmin, rmax). This options are used
in angular model to monitor how harmonics parameters depend on the beam
offset (dipole harmonic) and how different regions of electron beam contribute
into harmonics amplitudes (Fig. 16).

(a) (b)

Figure 16: (a) – off centered beam (x, y)off = 0.5 [mm], (b) – filter by radius
5...6 [mm].
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4.2 Angular model script

I = 44 [mA] I = 330 [mA]

I = 2040 [mA] I = 2490 [mA]

Figure 17: Angular distribution function and relative harmonics amplitudes.

4.2 Angular model script

This script is used to obtain angular distribution function and harmonic param-
eters (relative amplitudes and phases) for transverse electron beam profile. To
run this script use command:

./AngularDistribution.sh

You also may want to change script parameters such as input distribution, center
of charge offset, particle filter, number of slices, number of harmonics and other
(see comments for details). Script creates file ”harmonics.txt” where specified
number of largest harmonic parameters are saved. Template for angular routine
is saved into ”angular.txt”. Harmonic parameters can be rescaled to a large
cylinder radius (see comments). This is done in order to study effects on the
beam core and to save some computation time. But results of such simulations
are only valid for the region r < rb, where rb is original cylinder radius.
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4.2 Angular model script

Printout for SDDS file results/angular.naff

m fFrequency fAmplitude fPhase
------------------------------------------------------------
1.000883e+00 1.592955e-01 1.893044e-02 -1.206049e+00
2.001751e+00 3.185886e-01 1.493936e-01 2.406676e+00
3.002622e+00 4.778821e-01 1.492338e-02 1.460827e-01
4.003503e+00 6.371773e-01 1.917637e-02 -1.669732e+00
8.007018e+00 1.274357e+00 5.053672e-03 -2.667851e-01
9.007868e+00 1.433647e+00 2.558125e-03 2.977856e-01
...
5.204551e+01 8.283300e+00 4.380327e-03 -2.902914e+00

Figure 18: Harmonics parameters.

4.2.1 Angular distribution

To create an angular distribution function transverse profile is divided into an-
gular slices. Number of particles in each slice is then calculated and normalized
with respect to the number of angular slices. Then FFT is performed to find
harmonic parameters. Amplitudes of harmonics are then normalized with re-
spect to the signal average value. On Fig 17 angular distribution and it’s FFT is
shown for several transverse electron beam profiles. One can also offset distribu-
tion center to monitor harmonics behavior. It is also possible to filter particles
by radius in order to see how harmonics parameters alter within the beam. For
off set and filtered case output is shown on Fig. 19.

4.2.2 Harmonic parameters

On Fig. 18 script output with harmonics parameters is shown. Program searches
for specified number of largest harmonics and then sort them by m – harmonic
number. Harmonic parameters can be rescaled to a large cylinder radius. It
is useful if one care only about effects on the beam core. Then to keep kick
constant new amplitude is calculated (see comments). Template for one specified
harmonic is save into ”angular.txt” (Fig. 20, 21, 22).
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4.2 Angular model script

(a)

(b)

(c)

I = 44 [mA]

Figure 19: (a) – usual case, (b) – filtered case, (c) – offset case.
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4.2 Angular model script

Value_1: 1.0 ! skip
Value_2: 1.0 ! # slices
Value_3: 200.0 ! length[cm]
Value_4: 1.0E-10 ! omega, i=0.4, b=0.135
Value_5: 0.21 !rb[cm]
Value_6: 2 ! harmonic #
Value_7: 0.149393571407428 ! harmonic amp
Value_8: 2.406675646657053e+00 ! harmonic phase

Figure 20: Template for quadrupole harmonic with cylinder radius rb = 3.5σ

Value_1: 1.0 ! skip
Value_2: 1.0 ! # slices
Value_3: 200.0 ! length[cm]
Value_4: 1.0E-10 ! omega, i=0.4, b=0.135
Value_5: 1. !rb[cm]
Value_6: 2 ! harmonic #
Value_7: 3.38760932896663 ! harmonic amp
Value_8: 2.406675646657053e+00 ! harmonic phase

Figure 21: Template for quadrupole harmonic and amplitude rescaled to cylin-
der radius rb = 1 [cm].

Value_1: 1.0 ! skip
Value_2: 1.0 ! # slices
Value_3: 200.0 ! length[cm]
Value_4: 1.0E-10 ! omega, i=0.4, b=0.135
Value_5: 0.21 !rb[cm]
Value_6: 3 ! harmonic #
Value_7: 0.0149233755097962 ! harmonic amp
Value_8: 1.460826894915697e-01 ! harmonic phase

Figure 22: Template for sextupole harmonic.
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4.3 Radial model script

Figure 23: Normalized beam radial distribution and ideal distribution at the
gun position.

4.3 Radial model script

This script is used to simulate HEBL element with non ideal radial profile.
Non ideal radial profile can be contracted from electron beam measurements or
simulations. Script creates polynomial interpolation of normalized radial electric
field and calculates normalization parameters (see ??). The run command is,

./AngularDistribution.sh

One can start with 2D particles distribution, normalized radial density or nor-
malized radial electric field. Interpolation order and regions can be modified
inside the script. By default electric field is divided into two parts r1, r2 and
r2, r3 and two corresponding polynoms are found. r1 is chosen such that electric
field for r < r1 is negligible. r3 is the distribution cut off, i.e. rho(r > r3) = 0
and the electric field is proportional to 1/r. r2 should be chosen reasonably to
provide a better interpolation. By default interpolation order is 4 for the first
region and 6 for the second one. This particular chose is done because the num-
ber of free parameters is limited. One can use smaller interpolation orders but
not lager then default values. It is also possible to change matching parameters,
i.e. the position in sigmas and sigma size itself.

4.3.1 Normalized radial distribution from 2D

First normalized radial beam density is calculated (Fig. 23). 2D beam distribu-
tion is divided into radial slices, then the number of particles is calculated for
each slice.
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4.3 Radial model script

Figure 24: Normalized electric field and ideal HEBL field at the gun position.

4.3.2 Normalized electric field

At this stage normalized electric field is calculated (Fig 24). We also find po-
sition where electric field has it’s maximum. Transverse kick is inverse propor-
tional to this radius value. For non ideal profiles rmax is lager then the ideal
maximum location position. Then maximum kick is smaller.

4.3.3 Transport of density and electric field

Obtained normalized density and electric field are given in some position (gun or
other) outside the main solenoid. Then we should transport these distributions
and match to the desired numbers of sigma(Fig. 24).
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4.3 Radial model script

Figure 25: (a) – profile from 2D matched to 3.5σ, (b) – profile from warp
matched to 3.5σ, (c) – profile from warp matched to 4σ.
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4.3 Radial model script

Figure 26: Electric field interpolation.

4.3.4 Electric field interpolation

Electric field then interpolated to obtain analytical expression (Fig. 26). Inter-
polation is done for two regions (shown in different colors). Other simulation
parameters are written into ”poly.txt” file (see below).

radial model parameters
nsigma= 3.50 -- numbers of sigma
rmax_cut= 3.984746127526733e-01 -- rho(r>rmax_cut=0)
param(8)=rmax/frac=0.377728621808966 -- rmax/(kappa/eta)
rmin= 0.14 -- interpolation-1 start
rmax= 0.219333333333333 -- intrpoaltion-1 end
interpolation order= 5 -- interpolation order
f(r) -- first poly
Printout for SDDS file results/fit1.sdds
ErSddspfitlabel = Er = -1.56034 +14.1873*r +99.0892*r$a2$n
-1370.34*r$a3$n +3613.19*r$a4$n
rmin= 0.219333333333333 -- interpolation-2 start
rmax= 3.984746127526733e-01 -- interpolation-2 end
interpolation order= 7 -- interpolation order
f(r) -- second poly
Printout for SDDS file results/fit2.sdds
ErSddspfitlabel = Er = 28.2834-835.716*r +8870.45*r$a2$n-
46438.9*r$a3$n +130594*r$a4$n-189364*r$a5$n +111241*r$a6$n
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4.4 Lost particle distribution script

4.4 Lost particle distribution script

This set of scripts is used to obtain particles loss rate due to the presents of
HEBL element and lost particle positions in the initial beam distribution.

4.4.1 Loss rate

Here beam intensity is normalized with reference intensity (without HEBL).
And then slopes (loss rate) are calculated (Fig. 27).

4.4.2 Histograms

Several histograms are used to monitor lost particles positions within the initial
distribution. On Fig. 28 2D histograms of lost particles are shown. Number of
lost particles with respect to 4D radius (r2 = x2 + y2 + p2

x + p2
y) is shown on

Fig. 29.
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4.4 Lost particle distribution script
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Figure 27: Particles loss rate for 3.5σ (top) and 3.75σ (bottom).
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4.4 Lost particle distribution script
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4.4 Lost particle distribution script
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Figure 29: Number of lost particles as a function of 4D radius.
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5 HEBL simulations

5.1 Harmonics

5.2 Aligment

5.3 Experiment
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